3.2.20 \(\int \frac {(e \sin (c+d x))^{7/2}}{a+a \sec (c+d x)} \, dx\) [120]

3.2.20.1 Optimal result
3.2.20.2 Mathematica [A] (verified)
3.2.20.3 Rubi [A] (verified)
3.2.20.4 Maple [A] (verified)
3.2.20.5 Fricas [C] (verification not implemented)
3.2.20.6 Sympy [F(-1)]
3.2.20.7 Maxima [F]
3.2.20.8 Giac [F]
3.2.20.9 Mupad [F(-1)]

3.2.20.1 Optimal result

Integrand size = 25, antiderivative size = 139 \[ \int \frac {(e \sin (c+d x))^{7/2}}{a+a \sec (c+d x)} \, dx=-\frac {4 e^4 \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{21 a d \sqrt {e \sin (c+d x)}}-\frac {2 e^3 \cos (c+d x) \sqrt {e \sin (c+d x)}}{21 a d}+\frac {2 e^3 \cos ^3(c+d x) \sqrt {e \sin (c+d x)}}{7 a d}+\frac {2 e (e \sin (c+d x))^{5/2}}{5 a d} \]

output
2/5*e*(e*sin(d*x+c))^(5/2)/a/d+4/21*e^4*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2 
)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*s 
in(d*x+c)^(1/2)/a/d/(e*sin(d*x+c))^(1/2)-2/21*e^3*cos(d*x+c)*(e*sin(d*x+c) 
)^(1/2)/a/d+2/7*e^3*cos(d*x+c)^3*(e*sin(d*x+c))^(1/2)/a/d
 
3.2.20.2 Mathematica [A] (verified)

Time = 1.74 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.88 \[ \int \frac {(e \sin (c+d x))^{7/2}}{a+a \sec (c+d x)} \, dx=\frac {e^3 \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \left (40 \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),2\right )+(42+25 \cos (c+d x)-42 \cos (2 (c+d x))+15 \cos (3 (c+d x))) \sqrt {\sin (c+d x)}\right ) \sqrt {e \sin (c+d x)}}{105 a d (1+\sec (c+d x)) \sqrt {\sin (c+d x)}} \]

input
Integrate[(e*Sin[c + d*x])^(7/2)/(a + a*Sec[c + d*x]),x]
 
output
(e^3*Cos[(c + d*x)/2]^2*Sec[c + d*x]*(40*EllipticF[(-2*c + Pi - 2*d*x)/4, 
2] + (42 + 25*Cos[c + d*x] - 42*Cos[2*(c + d*x)] + 15*Cos[3*(c + d*x)])*Sq 
rt[Sin[c + d*x]])*Sqrt[e*Sin[c + d*x]])/(105*a*d*(1 + Sec[c + d*x])*Sqrt[S 
in[c + d*x]])
 
3.2.20.3 Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.02, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.640, Rules used = {3042, 4360, 25, 25, 3042, 3318, 3042, 3044, 15, 3048, 3042, 3049, 3042, 3121, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \sin (c+d x))^{7/2}}{a \sec (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (e \cos \left (c+d x-\frac {\pi }{2}\right )\right )^{7/2}}{a-a \csc \left (c+d x-\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4360

\(\displaystyle \int -\frac {\cos (c+d x) (e \sin (c+d x))^{7/2}}{a (-\cos (c+d x))-a}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int -\frac {\cos (c+d x) (e \sin (c+d x))^{7/2}}{\cos (c+d x) a+a}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {\cos (c+d x) (e \sin (c+d x))^{7/2}}{a \cos (c+d x)+a}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right ) \left (-e \cos \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}{a \sin \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 3318

\(\displaystyle \frac {e^2 \int \cos (c+d x) (e \sin (c+d x))^{3/2}dx}{a}-\frac {e^2 \int \cos ^2(c+d x) (e \sin (c+d x))^{3/2}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e^2 \int \cos (c+d x) (e \sin (c+d x))^{3/2}dx}{a}-\frac {e^2 \int \cos (c+d x)^2 (e \sin (c+d x))^{3/2}dx}{a}\)

\(\Big \downarrow \) 3044

\(\displaystyle \frac {e \int (e \sin (c+d x))^{3/2}d(e \sin (c+d x))}{a d}-\frac {e^2 \int \cos (c+d x)^2 (e \sin (c+d x))^{3/2}dx}{a}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {2 e (e \sin (c+d x))^{5/2}}{5 a d}-\frac {e^2 \int \cos (c+d x)^2 (e \sin (c+d x))^{3/2}dx}{a}\)

\(\Big \downarrow \) 3048

\(\displaystyle \frac {2 e (e \sin (c+d x))^{5/2}}{5 a d}-\frac {e^2 \left (\frac {1}{7} e^2 \int \frac {\cos ^2(c+d x)}{\sqrt {e \sin (c+d x)}}dx-\frac {2 e \cos ^3(c+d x) \sqrt {e \sin (c+d x)}}{7 d}\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 e (e \sin (c+d x))^{5/2}}{5 a d}-\frac {e^2 \left (\frac {1}{7} e^2 \int \frac {\cos (c+d x)^2}{\sqrt {e \sin (c+d x)}}dx-\frac {2 e \cos ^3(c+d x) \sqrt {e \sin (c+d x)}}{7 d}\right )}{a}\)

\(\Big \downarrow \) 3049

\(\displaystyle \frac {2 e (e \sin (c+d x))^{5/2}}{5 a d}-\frac {e^2 \left (\frac {1}{7} e^2 \left (\frac {2}{3} \int \frac {1}{\sqrt {e \sin (c+d x)}}dx+\frac {2 \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 d e}\right )-\frac {2 e \cos ^3(c+d x) \sqrt {e \sin (c+d x)}}{7 d}\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 e (e \sin (c+d x))^{5/2}}{5 a d}-\frac {e^2 \left (\frac {1}{7} e^2 \left (\frac {2}{3} \int \frac {1}{\sqrt {e \sin (c+d x)}}dx+\frac {2 \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 d e}\right )-\frac {2 e \cos ^3(c+d x) \sqrt {e \sin (c+d x)}}{7 d}\right )}{a}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {2 e (e \sin (c+d x))^{5/2}}{5 a d}-\frac {e^2 \left (\frac {1}{7} e^2 \left (\frac {2 \sqrt {\sin (c+d x)} \int \frac {1}{\sqrt {\sin (c+d x)}}dx}{3 \sqrt {e \sin (c+d x)}}+\frac {2 \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 d e}\right )-\frac {2 e \cos ^3(c+d x) \sqrt {e \sin (c+d x)}}{7 d}\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 e (e \sin (c+d x))^{5/2}}{5 a d}-\frac {e^2 \left (\frac {1}{7} e^2 \left (\frac {2 \sqrt {\sin (c+d x)} \int \frac {1}{\sqrt {\sin (c+d x)}}dx}{3 \sqrt {e \sin (c+d x)}}+\frac {2 \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 d e}\right )-\frac {2 e \cos ^3(c+d x) \sqrt {e \sin (c+d x)}}{7 d}\right )}{a}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 e (e \sin (c+d x))^{5/2}}{5 a d}-\frac {e^2 \left (\frac {1}{7} e^2 \left (\frac {2 \cos (c+d x) \sqrt {e \sin (c+d x)}}{3 d e}+\frac {4 \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{3 d \sqrt {e \sin (c+d x)}}\right )-\frac {2 e \cos ^3(c+d x) \sqrt {e \sin (c+d x)}}{7 d}\right )}{a}\)

input
Int[(e*Sin[c + d*x])^(7/2)/(a + a*Sec[c + d*x]),x]
 
output
(2*e*(e*Sin[c + d*x])^(5/2))/(5*a*d) - (e^2*((-2*e*Cos[c + d*x]^3*Sqrt[e*S 
in[c + d*x]])/(7*d) + (e^2*((4*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c 
 + d*x]])/(3*d*Sqrt[e*Sin[c + d*x]]) + (2*Cos[c + d*x]*Sqrt[e*Sin[c + d*x] 
])/(3*d*e)))/7))/a
 

3.2.20.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3044
Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_ 
Symbol] :> Simp[1/(a*f)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a 
*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&  !(I 
ntegerQ[(m - 1)/2] && LtQ[0, m, n])
 

rule 3048
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(-a)*(b*Cos[e + f*x])^(n + 1)*((a*Sin[e + f*x])^(m - 
1)/(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n))   Int[(b*Cos[e + f*x])^n 
*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] 
 && NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3049
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[a*(b*Sin[e + f*x])^(n + 1)*((a*Cos[e + f*x])^(m - 1)/ 
(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n))   Int[(b*Sin[e + f*x])^n*(a 
*Cos[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && 
 NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3318
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^( 
n_.))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[g^2/a   Int 
[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Simp[g^2/(b*d)   Int 
[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, 
d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0]
 

rule 4360
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_.), x_Symbol] :> Int[(g*Cos[e + f*x])^p*((b + a*Sin[e + f*x])^m/Si 
n[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]
 
3.2.20.4 Maple [A] (verified)

Time = 5.15 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.92

method result size
default \(\frac {\frac {2 e \left (e \sin \left (d x +c \right )\right )^{\frac {5}{2}}}{5 a}+\frac {2 e^{4} \left (3 \sin \left (d x +c \right )^{5}+\sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-5 \sin \left (d x +c \right )^{3}+2 \sin \left (d x +c \right )\right )}{21 a \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}}}{d}\) \(128\)

input
int((e*sin(d*x+c))^(7/2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)
 
output
(2/5/a*e*(e*sin(d*x+c))^(5/2)+2/21*e^4*(3*sin(d*x+c)^5+(-sin(d*x+c)+1)^(1/ 
2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*EllipticF((-sin(d*x+c)+1)^(1/2) 
,1/2*2^(1/2))-5*sin(d*x+c)^3+2*sin(d*x+c))/a/cos(d*x+c)/(e*sin(d*x+c))^(1/ 
2))/d
 
3.2.20.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.91 \[ \int \frac {(e \sin (c+d x))^{7/2}}{a+a \sec (c+d x)} \, dx=-\frac {2 \, {\left (5 \, \sqrt {2} \sqrt {-i \, e} e^{3} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} \sqrt {i \, e} e^{3} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - {\left (15 \, e^{3} \cos \left (d x + c\right )^{3} - 21 \, e^{3} \cos \left (d x + c\right )^{2} - 5 \, e^{3} \cos \left (d x + c\right ) + 21 \, e^{3}\right )} \sqrt {e \sin \left (d x + c\right )}\right )}}{105 \, a d} \]

input
integrate((e*sin(d*x+c))^(7/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")
 
output
-2/105*(5*sqrt(2)*sqrt(-I*e)*e^3*weierstrassPInverse(4, 0, cos(d*x + c) + 
I*sin(d*x + c)) + 5*sqrt(2)*sqrt(I*e)*e^3*weierstrassPInverse(4, 0, cos(d* 
x + c) - I*sin(d*x + c)) - (15*e^3*cos(d*x + c)^3 - 21*e^3*cos(d*x + c)^2 
- 5*e^3*cos(d*x + c) + 21*e^3)*sqrt(e*sin(d*x + c)))/(a*d)
 
3.2.20.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(e \sin (c+d x))^{7/2}}{a+a \sec (c+d x)} \, dx=\text {Timed out} \]

input
integrate((e*sin(d*x+c))**(7/2)/(a+a*sec(d*x+c)),x)
 
output
Timed out
 
3.2.20.7 Maxima [F]

\[ \int \frac {(e \sin (c+d x))^{7/2}}{a+a \sec (c+d x)} \, dx=\int { \frac {\left (e \sin \left (d x + c\right )\right )^{\frac {7}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate((e*sin(d*x+c))^(7/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")
 
output
integrate((e*sin(d*x + c))^(7/2)/(a*sec(d*x + c) + a), x)
 
3.2.20.8 Giac [F]

\[ \int \frac {(e \sin (c+d x))^{7/2}}{a+a \sec (c+d x)} \, dx=\int { \frac {\left (e \sin \left (d x + c\right )\right )^{\frac {7}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate((e*sin(d*x+c))^(7/2)/(a+a*sec(d*x+c)),x, algorithm="giac")
 
output
integrate((e*sin(d*x + c))^(7/2)/(a*sec(d*x + c) + a), x)
 
3.2.20.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e \sin (c+d x))^{7/2}}{a+a \sec (c+d x)} \, dx=\int \frac {\cos \left (c+d\,x\right )\,{\left (e\,\sin \left (c+d\,x\right )\right )}^{7/2}}{a\,\left (\cos \left (c+d\,x\right )+1\right )} \,d x \]

input
int((e*sin(c + d*x))^(7/2)/(a + a/cos(c + d*x)),x)
 
output
int((cos(c + d*x)*(e*sin(c + d*x))^(7/2))/(a*(cos(c + d*x) + 1)), x)